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Abstract 

An atomic scale study is presented of the trapping of helium atoms by vacancies and di-vacancies in beryllium. 
Constraint molecular dynamic methods are used to estimate formation energies, helium-vacancy binding energies, migration 
energies as well as for direct evaluation of Helmholtz free energy differences. The beryllium cohesion is described with a 
model derived from the second moment tight binding approximation, while the helium-beryllium interaction is based on the 
embedded atom model and a mean field approximation. It is found that up to ten helium atoms may be bound to one single 
vacancy and up to fourteen to a di-vacancy. The possible trapped helium configurations are identified. The thermodynamic 
stability of such helium-vacancy clusters is found to be only little dependent on the vibrational entropy in a temperature 
range from 0 K to 1270 K, which shows that 0 K energetic calculations already provide reasonable free energy estimates. 
This suggests that the method can be used to study helium retention in large systems with extended defects at temperatures 
relevant to fission and fusion technologies. © 1997 Elsevier Science B.V. 

1. Introduction 

Beryllium is widely used as moderator and reflector of 
nuclear fission research reactors generally at temperatures 
between 50 and 150°C. Its use is also seriously considered 
in the future magnetic fusion reactor as plasma facing 
material on diverter and first wall and as neutron multiplier 
in the blanket. For all these uses, a thorough knowledge of 
the behaviour of beryllium under neutron irradiation is of 
primary importance. The most damaging effect on the 
properties of the beryllium when it is subjected to a 
neutron flux is coming from the production of helium 
inside the material as the result of the two nuclear reac- 
tions: (n, 2n) and (n, (~) [1]. 

A relatively large amount of experimental data is avail- 
able from low temperature irradiation experiments. The 
observed dimensional changes are limited and increase 
linearly with the high energy neutron fluence. The scatter- 
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ing between these data is small. If the swelling is probably 
not a cause of concern at low temperature, the ductility of 
the material which is already very small before irradiation 
is practically reduced to zero after a rather low neutron 
fluence. This effect seems also to be essentially due to the 
presence of increasing concentrations of helium in the 
material. Data from irradiation experiments at the elevated 
temperatures of interest for the fusion reactor (350-700°C) 
are scarce and their scattering much larger. Annealing 
samples previously irradiated at low temperature has been 
tried in order to increase the swelling data at elevated 
temperature. The scattering in the data is not reduced. 
However, phenomenological relationships were derived 
[2-5]. Some of them were critically reviewed by Nardi [6]. 
Recently, a computer code (ANFIBE) based on an existing 
code for the modelling of gas behaviour in fuel elements 
has been proposed [7]. It has been observed that the 
properties including the swelling behaviour are very sensi- 
tive to the structural (grain size, oxide particle distribution) 
and fabrication (purity, oxide content) parameters [8]. The 
differences between the materials tested by the various 
investigators can probably explain the scatter of the data. 
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Presently, new irradiation experiments are being carried 
out on different kinds of beryllium samples to get a more 
precise insight into the phenomena occurring during irradi- 
ation at elevated temperature [9,10]. Complementary to 
these experiments, the present work is part of a project 
undertaken to understand basic first steps in the process of 
the progressive helium concentration increase during neu- 
tron irradiation and to evaluate the influence of the temper- 
ature on them. One of these steps, on which the present 
paper focuses is the possible precipitation of helium at 
point defects. This is analysed in detail by means of atomic 
scale modelling. 

In Section 2, the methods and the models used are 
described which allow a pertinent description of the he- 
lium-vacancy interaction in beryllium. Energetic calcula- 
tions are discussed in Section 3 both ignoring and taking 
vibrational entropy effects into account. 

Conclusive comments are provided in Section 4. 

2. The methods  

2.1. Molecular dynamics 

A convenient way to handle an atomic system which 
evolution at the atomic scale is governed by temperature 
induced fluctuations is to consider the electronic system as 
a reservoir embedding the ionic system. The solid may 
then be described by means of a canonical ensemble where 
the ionic system exchanges energy with a heat bath formed 
by the electrons. Such a situation is described by the 
so-called extended system method [11,12] in which one 
degree of freedom is introduced, acting on the external 
system (the electrons in the present situation) of the physi- 
cal system of N particles (the ions). The corresponding 
hamiltonian from which the equations of motion are de- 
rived may be written as 

H = ~i 2mi~s + V(r) + ~ + gkT In s, (1) 

where s is the additional degree of freedom, p,. its conju- 
gate momentum, Q an inertial factor, and V(r) a potential 
term. The other potential term, gkT In s has a functional 
dependence on s such that the partition function derived 
from Eq. (1) is that of the canonical NVT ensemble. It 
should be noted that Eq. (1) reduces to the hamiltonian of 
the NVE ensemble from which the Newton equations of 
motion are derived when fixing s = 1. 

In the present work, the equations of motion are inte- 
grated numerically according to the fifth order Nordsieck 
predictor-corrector algorithm [13]. The simulation boxes 
used typically contain one thousand atoms. Neighbour lists 
are prepared for the force calculations and periodically 
refreshed according to the Verlet algorithm [14]. It may be 
noted that its combination with a linked-cell algorithm [15] 

is only efficient for larger systems than used in the present 
work. The square root of the potential and force functions 
are tabulated. In such a way, forces may be estimated by 
linear interpolation with comparable accuracy over the 
whole range of interaction. Born-yon Karman periodic 
boundary conditions are applied [16] in order to simulate 
an infinite system. 

2.2. The potentials 

The major parameter which governs the dynamics of 
the atomic interactions is the potential from which the 
interatomic forces derive. In the case of beryllium, the 
particles interact via an N-body potential, the attractive 
part of which is taken identical to that used in a cohesion 
model derived from the second moment approximation of 
the tight binding scheme [17]. This scheme was adapted to 
hcp metals [18] and the potential energy may be written as 

E, ot = ½ E V( Rij ) - Y'~f(Pi), (2 )  
6 i 

where the summations run over all N a t o m s .  V(Rij) 
represents the pair interaction between atoms i and j 
separated by a distance Rij a n d  f is an attractive many 
body function. In the tight binding scheme, f is interpreted 
as a sum of squares of hopping integrals and Pi is written 
as a sum of pair potentials 

O, = g a,( R,j). (3)  
J 

In the second moment approximation, j is proportional to 
the square root of p. It is shown in [18], however, that this 
implies the elastic constant C~2 to be larger than C66 
which is not the case of bcp beryllium. Therefore, the 
following functional dependence of f on p is preferred 

f ( p )  = ~/-p(1 + Ap), (4) 

where A is a suitably chosen constant. Following [19], 
V(r) and @(r) are written as cubic splines 

V(r )=  L Ak(Rak--r)3H(Rak--r), (5a) 
k-1 

• (r) = E 8k(R,k - r)3H(R k- r), (5b) 
k - I  

where R,k and Rhk are the knot points, n = 7 and m = 5. 
Eqs. (5a) and (5b) thus have 24 adjustable parameters 
which allow a fitting of the potential on macroscopic and 
microscopic properties of the material. The values of these 
parameters and of the parameter A (Eq. (4)) are tabulated 
for beryllium and other hcp metals in [19]. 

The embedded atom model (EAM) is used in the 
framework of the effective medium theory to model he- 
lium in a beryllium matrix [20-25]. In the effective medium 
theory, it is considered that the energy of an atom embed- 
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ded in a system of interacting atoms depends on the 
electron density of the atoms surrounding atom i. Accord- 
ing to Ref. [22], one writes 

E, = E ( h , ) ,  (6)  

where ~i is the average of the density contributions An) 
from the neighbouring atoms in the region occupied by 
atom i, 

T'li = E < Anj>i (7) 
j# i  

In the low electron density limit, the embedding energy 
function increases linearly with the background electron 
density n(r) [26], 

V ( r )  = a n ( r ) .  (8) 

If, as suggested in Ref. [27], the electron density at posi- 
tion r is written as 

f i ( r )  = noe-n(~ to) (9) 

where n o is the electronic density minimising the energy 
of the system, r/ a constant and r o the Wigner-Seitz cell 
radius, the embedding energy takes the form of a Born-  
Mayer potential 

V ( r )  =Ae -#r. (10) 

Using, in Eq. (9), the parameter values a = 200 eV bohr 3 
for embedded helium [24], r o = 2.633 bohr, n o = 0.0076 
bohr-3 and r / =  1.928 bohr i [27], one deduces the values 
of the parameters A = 243.5 eV and 77 = 3.6433 A -  i in 
Eq. (10). These values are substantially different from 
those deduced from a least square fit of TFD data in [28] 
(A = 412 eV and "q = 4.03 ,~- i ) .  The latter predicts a too 
high energy at small separations and becomes similar to 
the effective medium estimate at distances close to the first 
neighbour distance in beryllium. Finally, a Born-Mayer  
model potential is also used for the H e - H e  interaction of 
which parameters are determined on the basis of a statisti- 
cal theory using electron densities from Hartree-Fock 
calculations [29]. 

2.3. Energetic calculations 

The kinetics of point defects and the stability of point 
defect clusters depend on a limited number of parameters 
as formation enthalpies, migration enthalpies and 
Helrnholtz free energies, which can be estimated. 

Self-interstitial diffusion in beryllium is found experi- 
mentally to obey an Arrhenius law fairly well [30,31], 
consistent with a mono-vacancy mechanism. This is an 
indication that the vacancy formation and migration en- 
thalpies are only weakly dependent on temperature and 
they can be reasonably estimated at 0 K. No such indica- 
tion is available about the formation of point defect clus- 
ters for which temperature dependent free energy calcula- 
tions are thus necessary. Equilibrium configurations 0 K 

are estimated with the quasi dynamic procedure including 
damping forces first suggested by Bennet [32]. The method 
allows for vacancy and interstitial formation energy calcu- 
lation, which are given by 

EF=No ND No ' 

where N O and N o are the number of particles in the 
perfect and the defective solid, respectively, and U o and 
U D are the 0 K energies per atom in the perfect and the 
relaxed defective solid, respectively. 

Migration energies are a little more difficult to esti- 
mate. Indeed, they are defined as the difference between 
the configuration energies of the system with the migrating 
species at the potential saddle point and in the initial 
potential well. The problem is that, except in very simple 
situations like, say, the vacancy diffusion mechanism in a 
cubic metal, the saddle point cannot be identified unam- 
biguously on the only basis of geometrical considerations 
and their location is thus not obvious. In principle, it can 
be identified by following the real trajectory of the diffus- 
ing particle in time, but this can only be done by molecular 
dynamics when the jump frequency is high enough which, 
practically, only happens in a limited number of situations. 

Therefore, the following procedure is employed. The 
initial and the final jump positions of the migrating species 
being known, a rectangular parallelopipedic box is con- 
structed, using these two points as the edges of one 
diagonal. A number of intermediate equidistant planes is 
then considered from one edge of the box to another, 
parallel to one of its face. Their number depends on the 
desired accuracy. The points inside the box and inside each 
of these planes where the helium configuration energy is 
minimum are then determined. This is done by using the 
damping technique mentioned above for a helium atom 
constrained to move inside one of these planes, and the 
procedure is repeated in each of them. The saddle point is 
located between the two neighbouring planes where the 
so-determined minimum energies are the highest and its 
value is evaluated by interpolation. In the situations dis- 
cussed in the present work, ten to twelve intermediate 
planes are sufficient in order to evaluate the saddle point 
energy with an accuracy of 0.15 eV. 

Free energy differences are calculated at a given non 
zero temperature by the constrained molecular dynamic 
method described in Ref. [33]. In this method, the free 
energy difference is derived from a direct evaluation of a 
mean thermodynamic force. It takes advantage from the 
fact that thermodynamic functions can be partitioned among 
their projection onto atomic individual sites [34] and the 
Helmholtz free energy of a system may thus be written as 

A =  Y',(Ui + Zi) ,  (12) 
i 

where the summation runs over all sites. U,. is the potential 
energy at site i and A i is the vibrational contribution to 
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the free energy at site i. The expectation of the mean 
thermodynamic force f/  acting on atom i is defined as the 
negative gradient of the total free energy with respect to 
the position of atom i: 

Ji = - ViA. (13)  

Thus, starting from the projection of the canonical partition 
function Q on site i, the mean thermodynamic force may 
be written as 

1 V/Q f v / U e - ~ U d F  

.[) -  19 Q - fe_3Wd F (V/U) ,  (14)  

where F represents the spatial coordinates. The thermody- 
namic force fi thus appears to be equal to the negative of 
the canonical mean of the gradient of the internal energy 
with respect to the position of atom i. Eq. (14) may be 
computed by molecular dynamics (as well as by Monte 
Carlo) and, since canonical and microcanonical averages 
converge in the thermodynamic limit, Eq. (14) may be 
evaluated in both ensembles. It thus appears that the 
reversible work of the mean thermodynamic force to con- 
strain the system from one configuration to another repre- 
sents the associate free energy difference and it can be 
obtained along any reversible path between the initial and 
the final configuration. It thus applies to the migration of 
an atom from one site to another and may be used to 
discuss the stability of point defect clusters as a function of 
temperature. 

3. The results 

3.1. Formation energies 

Formation energies were computed for mono-vacan- 
cies, di-vacancies, helium interstitials at different geomet- 
rically plausible equilibrium sites, helium clusters decorat- 
ing one mono-vacancy or one di-vacancy inside their 
associated Wigner-Sei tz  cells as well as in neighbouring 
octahedral sites. 

The different possible helium interstitial positions in 
hcp lattices, as deduced from the lattice symmetry, are 
shown in Fig. 1. These sites are the octahedral (O), basal 
octahedral (BO), tetrahedral (T), basal tetrahedral (BT) and 
the so-called crowdion (C) sites. Fig. 2a- j  show the equi- 
librium positions found for clusters of two to five helium 
atoms decorating a mono-vacancy and a di-vacancy and 
confined inside the associated Wigner-Sei tz  cells. These 
are the lowest energy configurations found. Owing to the 
specific hcp stacking, the helium configurations around 
vacancies and di-vacancies cannot be obviously deduced 
on the only basis of geometric considerations. From sym- 
metry considerations, however, variants of the configura- 
tions displayed, with identical energy, can be deduced 
which are not shown. There are three variants to Fig. 2a, 

Fig. 1. An hexagonal close packed unit cell. The various stable 
and unstable equilibrium interstitial locations are shown. O refers 
to an octahedral site, BO to a basal octahedral site, T to a 
tetrahedral, BT to a basal tetrahedral and C to a so-called crow- 
dion location. 

two variants of Fig. 2b-d ,  one of Fig. 2e, two of Fig. 2f, 
two of Fig. 2g, one of Fig. 2h, four of Fig. 2i and of Fig. 
2j. 

The formation energies obtained with the model poten- 
tial described above are given in Table 1. Several features 

Fig. 2. The various helium-vacancy cluster configurations round 
stable at 0 K. The black dots represent beryllium atoms, the grey 
ones represent helium atoms. The vacancies are represented by 
open squares. Solid and dashed lines are drawn in order to guide 
the eye. (a d) helium atoms decorate one mono-vacancy; (e-g) 
they decorate a di-vacancy of type b; (i-h) they decorate a 
di-vacncy of type a. 
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Table 1 
Formation energies (noted E F, given in eV) of point defects and point defect clusters at OK. He,-V,, stands for a cluster formed by n 
helium atoms and m vacancies. V2a stands for a di-vacancy in a basal plane and V2b for a di-vacancy not in a basal plane. The uncertainty 
of the estimates is one digit on the last decimal 

De~ct E F De~ct E F De~ct E e De~ct E F 

V 1.13 He-V 4.8 He-V2. 5.3 He-Vzb 5.2 
V2a 1.58 He2-V 10.4 He2-Vza 9.2 He2-V2b 9.7 
Vzb 1.51 He3-V 15.6 He 3-V_~ a 14.1 He3-Vzb 14.0 
He at O 6.8 He4-V 21.4 He4-Vza 19.5 He4-Vzb 20.7 
He at BO unstable Hes-V 28.0 Hes-V2a 24.8 Hes-V2b 26.8 
He at T unstable He6-V unstable He6-V2a unstable He6-V2b unstable 
He at BT unstable 
He at C unstable 

clearly come out of this table. First, among the a priori 
geometrically plausible helium interstitial sites at 0 K, only 
the octahedral sites are found to be stable, which is 
consistent with a repulsive pair potential decreasing with 
distance. Second, two non equivalent types of di-vacancies 
are possible (noted V2a and V2b in Table 1) of which 
formation energies are found to be similar although a 

sizeable difference is noticed. 
The binding energy of a defect cluster formed by n 

helium atoms and m vacancies may be written as 

EB(He,  - Vm) = mEF(V,,)  + nEF(He)  - EF(He ,  - Vm). 

(15a) 

Similarly, the binding energy of one helium atom to a 
cluster formed by n helium atoms and m vacancies may 
be written as 

E~e(H % - Vm) = EF(H% - Vm) + EF(He)  

- EF(H%+,  - Vm). (15b) 

Both binding energies are given in Table 2. 
Using Eq. (15a), one finds a binding energy for di- 

vacancies is 0.68 eV if it sits in a basal plane and 0.75 eV 
otherwise. As helium-vacancy clusters are concerned, the 
binding energies estimated using Eq. (15b) are not found 
to be monotonically decreasing with the number of helium 
atoms in the cluster. This is better illustrated in Fig. 3 
which displays the binding energy of a helium atom 

residing inside the same Wigner-Seitz cell as a function of 
the number of atoms already decorating a mono-vacancy 
or a di-vacancy. The general tendency for the binding 
energy is to tend to zero with increasing number of 
decorating helium atoms but the fluctuations observed are 
significantly larger than the uncertainties. Moreover, it 
cannot be intuitively predicted whether the binding energy 
will be the highest in a mono-vacancy, a di-vacancy of 
type a or of type b. A similar non-monotonic dependence 
was already noticed in cubic metals [35,36]. On the other 
hand, the repulsive energy between the helium atoms 
within the same Wigner-Sei tz  cell increases with their 
number and on the other hand, it is lowered by the 
symmetry of their spatial configuration. The effect of this 
balance on the binding energy cannot be deduced from 
geometrical considerations. 

The results also show that, at 0 K, no more than five 

helium atoms can be bound to a mono-vacancy or a 
di-vacancy if they sit inside the associated Wigner-Seitz  
cell. This does not rule out the possibility for helium in 
neighbouring octahedral sites to be bound to a vacancy or 
a di-vacancy, and this problem is now examined in detail. 

Taking all configurations found of helium in the 
Wigner-Seitz  cells of a vacancy or of the di-vacancies as 
displayed in Fig. 2, the binding energy of an additional 
helium atom to these clusters is evaluated when sitting in a 
first neighbouring octahedral site. This binding energy is 

Table 2 
Binding energies, E B, for He atoms sitting in the Wigner-Seitz cells associated to the vacancy or the d-vacancies and EB(He O) for He 
atoms sitting in the first neighbouring octahedral site (given in eV). The uncertainty of the estimates is one digit on the last decimal 

Defect E B EB(He O) Defect E B EB(He O) Defect E B EB(He O) 

He-V + 3.1 + 0.4 He-V2a + 3.1 + 0.4 He-V2b + 3.1 + 0.3 
Hez-V + 1.2 - 0.3 He2-V2a + 2.9 + 0.3 He2-V2b + 2.3 -- 0.6 
He3-V + 1.6 + 0.5 He 3-V2a + 1.9 - 0.2 He 3-V2b + 2.5 + 0.5 
He4-V + 1.0 +0.0 Hea-V2a + 1.6 --0.4 He4-V2b +0.1 -- 1.8 
Hes-V +0.2 +0.3 Hes-V2a + 1.5 +0.4 Hes-Vzb +0.7 --0.6 
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Fig. 3. Binding energy of a nth helium atom to a cluster already 
containing n - 1  helium atoms as a function of n. Squares: the 
cluster contains one mono-vacancy; circles: it contains a di- 
vacancy of type a; triangles: it contains a di-vacancy of type b. 
Only equilibrium sites inside the associated Wigner-Seitz cells 
are considered. 

found to be no systematic function of the filling of the 
Wigner-Sei tz  cell. It is remarkable for instance to notice 
that such a configuration may be unstable when the num- 
ber of helium atoms in the Wigner-Sei tz  cell associated to 
a vacancy is as low as two, although it is stable when this 
number is five. 

No second atom sharing a first neighbour octahedral 
site can be bound and the helium in second neighbour 
octahedral sites are found unbound as well. In other words, 
there exists a maximum number of helium atoms which 
can decorate a mono-vacancy or a di-vacancy. Since there 
are six equivalent octahedral sites first neighbouring a 
mono-vacancy and ten around a di-vacancy, with respect 
to Table 1, the maximum number  of helium atoms which 
may decorate a mono-vacancy is eleven, it is fourteen 
around a di-vacancy of type a and twelve around a di- 
vacancy of type b. 

Up to this point, only static configurations are consid- 
ered. In what follows, the effect of temperature on cluster- 
ing and cluster stability is considered. Clustering requires 
the defects to be mobile in order to interact. The kinetics 
involves thermal diffusion and the associated migration 
energies. Diffusion paths are shortly discussed in the next 
section. 

3.2. Migration energies and mechanisms 

Self interstitial diffusion by a mono-vacancy mecha- 
nism is known from experiment to be anisotropic [30,31]. 
The activation energies found are 1.71 eV and 1.63 eV for 
diffusion parallel and perpendicular to the c-axis, respec- 
tively. Since these activation energies represent the sum of 
the vacancy formation energy and the vacancy migration 
energy, this difference results from the difference in migra- 
tion energies associated to diffusion jumps parallel to the 
c-axis or inside the basal plane. In the present model, the 
vacancy formation energy is 1.13 ± 0.01 eV. Migration 
energies were estimated according to the method described 

above and values of 2.0 _+ 0.3 and 1.8 +_ 0.3 eV are found 
parallel and perpendicular to the c-axis, respectively. The 
resulting activation energies, 3.1 +_ 0.4 and 2.9 +_ 0.4 eV, 
are substantially higher than the experimental values. The 
beryllium potential model used is responsible therefore. 
This one was designed on the basis of equilibrium proper- 
ties of perfect beryllium single crystal. The results may 
however be consistent with a small anisotropy, although 
the differences between migration energies parallel to the 
a- and c-axes are beyond the uncertainties. The migration 
energies derived from the model for a and b types di- 
vacancies are 1.9 ± 0.4 and 1.7 _+ 0.4 eV which are also 
consistent with a small anisotropy. The fact that the de- 
duced activation energies (3.48 eV and 3.21 eV, respec- 
tively) are higher than those associated to the mono- 
vacancy mechanism is consistent with the experimental 
observation that the di-vacancy diffusion jump frequency 
is smaller than the mono-vacancy jump frequency. Since 
the migration energies are similar, this is the consequence 
of their lower concentration at thermal equilibrium (higher 
formation energy). 

We now want to compare the migration energy of 
helium interstitials to that of mono-vacancies and, there- 
fore, it is needed to identify the helium diffusion mecha- 
nism in a perfect beryllium matrix at constant temperature. 
This is done by molecular dynamics. 

The beryllium simulation box is brought to thermal 
equilibrium at a temperature of 1100 K with one helium 
interstitial. This one is initially located at an octahedral site 
since this corresponds to the minimal configuration energy. 
Its trajectory is followed at thermal equilibrium over 50 ps. 
This is sufficient to observe more than 10 diffusion jumps. 
They all are found parallel to the c-axis. This computer 
experiment is repeated with starting the helium at a basal 
octahedral site and the same observation is made. There- 
fore, we conclude that the dominant interstitial helium 
diffusion mechanism in pure crystalline beryllium is paral- 
lel to the c-axis and it is observed to proceed by jump 
sequences between neighbouring octahedral sites parallel 
to the [0001] direction. 

Interstitial helium thus appears to be quite mobile and 
its residence locations between diffusion jumps are identi- 
fied. The saddle point is the basal octahedral location. Its 
migration energy is 0.6 ± 0.2 eV. This value is in very 
good agreement with the experimental estimates of 0.6 eV 
and 0.41 eV in [37,38], respectively. The interstitial helium 
migration energy is thus much smaller than the model 
vacancy migration energy. Simulations extending over 80 
ps at high temperature (T = 1273 K) with a box containing 
vacancies did not allow to observe any diffusion jumps, 
which is consistent with the above mentioned difference. 

In what precedes, the vacancy-helium cluster stability is 
discussed in terms of binding energies. By accounting for 
the high mobility of interstitial helium, this discussion may 
also be carried on in terms of a comparison between the 
migration energies of a helium atom toward a helium- 
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vacancy cluster and from a cluster. This comparison comes 
out in Fig. 4. 

A first point is that the migration energy of a helium 
atom from an octahedral site toward a cluster is most 
generally much smaller than from a cluster to an octahe- 
dral site. In addition, within the accuracy of the present 
estimates, its value is independent of the number  of al- 
ready clustered helium and of whether if migrates to a 
vacancy or a vacancy cluster. Its value of 0.3 eV is even 
twice as small as the migration energy from one octahedral 
site to another within a perfect beryllium lattice. In con- 
trast, migration energies from a cluster do depend on the 
number of helium atoms in this cluster. In the case of 
di-vacancies, however, no substantial difference is found 
between starting configurations with one or two clustered 
helium. This shows that the migration from one vacancy 
site is independent of whether the other is occupied or not. 
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Fig. 4. Migration energies of a nth helium initially sitting in a first 
neighbouring octahedral site to a cluster already containing n - l 
helium atoms (black circles) and from a cluster initially containing 
n atoms (open circles). (a) monovacancy, (b) V2a di-vacancy, 
(c) V2b di-vacancy. 

3.3. Thermal effects 

We now discuss the temperature dependence of the 
helium-vacancy cluster stability evidenced at 0 K. Two 
factors result from a change of temperature, which may 
affect the helium-vacancy cluster stability. These are the 
thermal expansion of the beryllium lattice and the change 
in the vibrational entropy which contributes to the free 
energy. No change in the role of the lattice anisotropy is to 
be expected since the c / a  ratio is not found both experi- 
mentally and by simulation, to be significantly temperature 
dependent. 

In what follows, the cluster stability is discussed on the 
basis of Helmholtz free energy difference estimates be- 
tween a configuration with an independent helium intersti- 
tial and a He ,_~-V, ,  cluster on the one hand and a 
configuration with a H e n - V  m cluster. The estimates are 
performed as a function of temperature and the thermal 
lattice expansion is taken into account. 

In the initial situation, one helium atom sits in an 
octahedral site first neighbour of a mono-vacancy or a 
di-vacancy, already decorated by a number  of helium 
atoms. 

The neighbouring helium is constrained at several 
(non-equilibrium) positions along a path to the vacancy. 
This path is arbitrarily chosen. For convenience, the con- 
strained positions are selected in such a way that, after 
estimation of the mean thermodynamic force on the atom 
at these positions, they may serve as the node coordinates 
for the integration of this force along the path by means of 
a quadrature. This way, the thermodynamic work of the 
thermodynamic mean force may be obtained, which repre- 
sents the free energy difference between the two configura- 
tions. The sign of this difference allows to conclude 
whether the H e , - V  m cluster is stable or not. 

The free energy difference estimate is checked to be 
independent of the integration path and also of the method 
used to constrain the helium atom at a non equilibrium 
position. The calculation is repeated for all He , -V , ,  con- 
figurations mentioned in Table 1 at temperatures of 0, 473, 
873 and 1273 K, taking the thermal expansion of the 
beryllium lattice into account. The results are given in Fig. 
5. The uncertainty in the estimate of the free energy 
differences is of the order of 0.2 eV. 

It clearly comes out in Fig. 5 that, in all cases, the 
contribution of the vibrational entropy is smaller than the 
uncertainties. The same is found for the thermodynamic 
work required to constrain one helium atom from a second 
to a first neighbour octahedral site and from any site to a 
migration saddle point. The vibrational entropy thus only 
has a small effect on the cluster stability and Eqs. (15a) 
and (15b) provides, within the present model, reasonable 
estimates of binding energies at all temperatures up to 
1273 K. Therefore, the results obtained by means of Eqs. 
(15a) and (15b) to situations where the helium bound to a 
mono-vacancy or a di-vacancy does not sit in the associ- 
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Fig. 5. Thermodynamic mean work required to constrain a nth 
helium from a first octahedral site to a helium-vacancy cluster 
already containing n - l helium atoms. (a) The cluster contains 
one mono-vacancy; (b) it contains a di-vacancy of type a; (c) it 
contains a di-vacancy of type b. Results at 0 K are shown by open 
triangles, at 483 K by filled triangles, at 873 K by open circles 
and at 1273 K by filled circles. 

ated Wigner Seitz cell, but in a neighbouring octahedral 
site can be considered as valid at non zero temperatures as 
well. The same is true for the estimates of migration 

energies. 

4. C o n c l u s i o n  

The main result of this atomic scale study is that ten 
and more helium atoms may be trapped at a single vacancy 
or at a di-vacancy. This number is not significantly tem- 
perature dependent and 0 K estimates are thus reasonable. 
The fact that beryllium vacancy diffusion obeys an Arrhe- 
nius law fairly well indicates that the relative population of 
di-vacancies is small and of tri- and large vacancy groups 
negligible. This is the reason why they are not considered 

in the present study, also the study of helium trapping by 
larger vacancy clusters is no problem. 

The binding energy of helium atoms to point defect 
traps is, however, much dependent on the number of 
helium atoms per trap and this should influence the statis- 
tics of helium-vacancy cluster populations. Another param- 
eter which affects this population is the migration energy. 
The estimated beryllium vacancy migration energy is larger 
than the experimental value, suggesting that the model 
potential could be improved in this respect. The helium 
migration energy resulting from the mean field approxima- 
tion and the embedded atom model may be better reason- 
able and its estimate from and to a helium-vacancy cluster 
may be useful for a kinetic study. 

Unfortunately, such small clusters are hardly charac- 
terised experimentally, which should be necessary for a 
better assessment of the model. Computer performances 
available at present, together with the evidence shown 
above that vibrational entropy only has a limited influence 
on the cluster stability makes a similar study for extended 
defects realistic. Work is in progress in this direction. 
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